

MCA-003-0492002 Seat No. _____

B. Sc. / M. Sc. (Applied Physics) (Sem. II) (CBCS) Examination

April / May - 2018

Paper - 6 : Applied Mathematics (New Course)

Faculty Code: 003 Subject Code: 0492002

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) All questions are compulsory.

- (2) Figures on the right indicate marks.
- 1 Attempt Any Seven short questions: (Two marks each) 14
 - (1) Solve $\frac{dy}{dx} = e^{3x-2y} + x^2e^{-2y}$.
 - (2) State Newton's law of cooling.
 - (3) Define: Homogeneous function.
 - (4) If $z = x^2y + 3xy^4$ wher $x = \sin 2t$ and $y = \cos t$, find $\frac{dz}{dt}$ where t = 0
 - (5) If $f(x,y) = x^2 + 3xy + y 1$ then find f_x and f_y .
 - (6) Solve $\frac{\partial^2 z}{\partial x^2} = \sin x$.
 - (7) Solve pq = p + q
 - (8) Evaluate $\iint xy(x+y) dxdy$ over the area between $y = x^2$ and y = x.
 - (9) State Rolle's theorem.
 - (10) Verify Cauchy's mean value theorem for

$$f(x) = x^2$$
 and $g(x) = x^3$ in [1,2]

(1) Solve
$$\left(x^2 - y^2\right) dx - xydy = 0$$

(2) Solve
$$xy(1+xy^2)\frac{dy}{dx} = 1$$
.

(3) Solve
$$(x^2 - ay)dx = (ax - y^2)dy$$
.

(4) Solve
$$(px - y)(py + x) = a^2 p$$

(1) If
$$x \frac{dy}{dx} + y = x^3 y^6$$
 then find I.F.

(2) Solve
$$(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$$
.

(3) Solve
$$\left(y^2 e^{xy^2} + 4x^3\right) dx + \left(2xy e^{xy^2} - 3y^2\right) dy = 0$$

(4) State Kirchhoff's law of electric circuits.

(1) State and prove Euler's theorem on homogeneous functions.

(2) If
$$u = \ln\left(x^3 + y^3 + z^3 - 3xyz\right)$$
 then prove that
$$\left(\frac{\partial}{\partial y} + \frac{\partial}{\partial y} + \frac{\partial}{\partial y}\right)^2 u = -\frac{9}{\left(x + y + z\right)^2}.$$

(3) If
$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$
then find $J\left(\frac{x, y, z}{r, \theta, \phi}\right)$

(4) Find the stationary points of the function
$$f(x,y) = x^2y - xy^2 + 4xy - 4x^2 - 4y^2.$$

(2) Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if z is defined implicitly as a function of x and y by the equation $x^3 + y^3 + z^3 + 6xyz = 1$.

- (3) Define: Stationary point and Saddle point.
- (4) Define: Jacobian.
- 4 (A) Write answers of Any Two: (Five marks each) 10

(1) Solve
$$\frac{\partial^2 z}{\partial x \partial y} = \cos(2x + 3y)$$
.

(2) Solve
$$\frac{y^2z}{x}\frac{\partial z}{\partial x} + xz\frac{\partial z}{\partial y} = y^2$$

- (3) Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$, given $u(x,0) = 6e^{-3x}$ using the separation of variables method.
- (4) Solve $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial x \partial y} = \sin x \sin 2y$
- (B) Write answers of Any Two: (Two marks each) 4
 - (1) Solve $\frac{\partial^2 z}{\partial x^2} = a^2 \frac{\partial^2 z}{\partial y^2}$
 - (2) Define: Lagrange's linear equation.
 - (3) Eliminate the arbitrary function from the equation $z = xy + f(x^2 + y^2)$
 - (4) Solve (p+q)(z-xp-yq)=1
- 5 (A) Write answer of Any Two: (Five marks each) 10
 - (1) State Lagrange's mean value theorem. Hence apply Lagrange's theorem to $f(x) = x^3 + 4x \text{ in } [-1,1].$
 - (2) Evaluate the following integrals

(i)
$$I_1 = \int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dxdydz$$

(ii)
$$I_1 = \int_{0}^{-1} \int_{y^2}^{1} \int_{0}^{1-x} x dx dy dz$$

- (3) Evaluate $\iiint (x+y+z) dxdydz$ over the tetrahedron bounded by planes x=0, y=0, z=0 and x+y+z=1.
- (4) Expand the following using Taylor's theorem
 - (i) $f_1(x) = \cos x$ about x = 1
 - (ii) $f_2(x) = e^x$ about x = 0
 - (iii) $f_3(x) = \log(1+x)$ about x = 1
- (B) Write answers of Any Two: (Two marks each) 4
 - (1) Find area lying between the parabola $y = x^2$ and line x + y 2 = 0.
 - (2) Change the order of integration for

$$I = \int_{0}^{1} \int_{3}^{3y} e^{x^2} dxdy \text{ and evaluate it.}$$

- (3) Evaluate : $\int_{0}^{5} \int_{0}^{x^2} x(x^2 + y^2) dxdy.$
- (4) State Taylor's theorem.